A Bootstrapper’s Diary

Visual diary of bootstrapping to 1M ARR

David Boyne

February 2026

A Bootstrapper’s Diary February 2026

About the Author

David Boyne is the founder of EventCatalog, an open-source tool that helps teams document their
event-driven architectures. What started as a side project has grown into a bootstrapped business
generating over $26K in monthly recurring revenue.

David builds in public, sharing the wins, the losses, and everything in between. A Bootstrapper’s Diary
is his collection of lessons learned on the road from $0 to $1M ARR.

« Twitter: https://twitter.com/boyney123

+ GitHub: https://github.com/boyney123

« LinkedIn: https://linkedin.com/in/david-boyne
« Website: https://diary.boyney.io

Thanks for downloading. Hope you find it useful. Feel free to reach out.

David Boyne 1

A Bootstrapper’s Diary February 2026

Contents
About the Author 1
Why I Quit My Job to Build EventCatalog and What | Learned About Taking the Leap 4
TheBuild-Up o o e e e e e e 5
MakingtheJump L L 5
The RealityontheOtherSide i 5
Start Before You’re Ready (But StartSmart) 6
My First Sale and What | Learned About Turning Free Users Into Paying Customers 7
Build Trust Before You Build a CheckoutPage 8
What to Actually Sell (andWhen) e 8
The Moment Someone PaysYou o v v i i it e e e e e e e 9
The Developer Pricing Disconnect 9
How I Turned Content Into a Growth Engine and Why It Works Better Than Ads 10
Content: Advocatethe ProblemSpace, 11
Community: Help First,SellNever e e e e 11
Product: Open SourceasProof e 11
Feedback: Listenand LoopBack e 12
I Confused Shipping Speed With Product Speed 13
The Trap of Shipping Too Fast e 14
The SignalYou’reOverdoing It e 14
FindingYourHeartbeat 15
What Your Users ActuallyNeed e 15
I Got to $23K MRR Without Stripe and What That Taught Me About Starting Simple 16
You Don’t Need the Stack You ThinkYouNeed 17
DoThingsThatDon’tScale o e 17
Simplels Enough (UntilltIsnt) 18
How to Know When to Add Complexity, 18
How Al Gave Me the Capacity of a Small Team and Why That Changes Everything for Solo
Founders 20
The Bottleneck Moved e e e 21
What I Actually DONOW o e e e e e 21
The Traps That Come WithMore Capacity 22
Smaller Teams, BiggerOutput e 22
David Boyne 2

A Bootstrapper’s Diary February 2026

Why | Spent All My Time Chasing New Customers and What | Learned When Renewals Hit 24

Thenewcustomertrap e e e e e 24
The Dopamine Hitof New Customers it 25
What Happens When Year TWO AITIVES v v v v i i i e e e e e e e e e e e e 25
What I’'m Doing Differently Now 25
How to Avoid ThisTrap FromDayOne o v i e e e e e e e et e 26

Why | Undercharged for EventCatalog and What | Learned About How Developers Get Pric-

ing Wrong 27
Developersand pricing o o o i e e 27
Why Developers Are Terrible at Pricing 28
You’re NotYour Customer e 28
What Happened When | Raised My Prices 29
How to Price Without Guessing 29
How Al Made Scope Creep My Biggest Threat and Why Speed Is Not a Strategy 30
The Trap . . . o e e e e e e e e e e e e e e e e 31
TheReal Cost o o o e e e e e e 31
TheFilter e 32
SimplicityasStrategy e e e e e e 32

David Boyne 3

A Bootstrapper’s Diary February 2026

Why I Quit My Job to Build EventCatalog and What | Learned About
Taking the Leap

What it really looks like to leave your job and go all-in on an open source project.

Taking the Leap

From side project to full-time Founder

2022 The Jump Now
| | —
The Builo(-Up Mak‘mg the Jump The Rea[ity Start Smart
=) AVAV

Side project gets traction
People using it while
barelt/ maintained.

12 months of Savings Ewmotional rollercoaster

No business model yet You're not just a dev

3 . Sales, support, marketin
That's a signal. Mot firying Sell worse / NG EMEEEREAN] I
tL\OM Fauilb‘\g

Sl«?p SOw\e‘tl«ing
Pe_ople can PQV
for while still
employec‘.

The scariest part is the week before you jump,
not the months after.

Once you're, n ?‘t, you learn Bl/ Joing.

Figure 1: Why | Quit My Job to Build EventCatalog and What | Learned About Taking the Leap

| started EventCatalog as a side project in January 2022. For a couple of years | built it alongside a
full-time developer job. I'd go to conferences and people would tell me they were using it, which was
wild because | was barely maintaining the thing.

Then circumstances changed and | found myself at a crossroads. | remember sitting there thinking,
“Could I actually do this full-time? Could | make open source sustainable?” | had no business model.
I had about a year of savings. And honestly, | had no idea if anyone would ever pay for what | was
building.

But the thought of not trying sat worse with me than the thought of failing. So I jumped. Looking
back, there are things I’d do differently and things | got right by accident. Here’s what I’'ve learned so
far.

David Boyne 4

https://github.com/event-catalog/eventcatalog

A Bootstrapper’s Diary February 2026

The Build-Up

+ Pay attention to the signals while you still have a salary. If people are using your project and
you’re barely maintaining it, that’s worth noticing. Don’t dismiss slow traction just because it’s
not dramatic.

+ Think about where your best creative energy goes each week. If your side project gets the scraps
after your day job drains you, you’re probably underestimating what it could become with full
attention.

« Start tracking who’s using your thing and why. Talk to them. Ask what problems it solves.
This is market research you can do for free while employed.

+ Don’twaitfora lightning bolt moment. For most of us the pull towards going full-time is gradual.
If the idea keeps coming back, that’s the signal.

+ Something to consider: traction without attention is not a business. It’s a hint. Treat it like a
hypothesis you need to test, not a guarantee.

Making the Jump

+ Figure out if people will pay before you quit. | jumped without a business model and |
wouldn’t recommend it. Even a small experiment (pre-sales, a waitlist, one paying user) gives
you something real to build on.

+ Save aggressively. | had about a year of runway and that gave me breathing room. 12 months
minimum if you can manage it. You’ll make worse decisions under financial pressure.

+ Reframe the risk for yourself. My thinking was simple: if it doesn’t work, | can go get a job. That
framing took the existential weight off it. You’re not burning your career. You’re taking a detour.

« Think about what you’d regret more. Not trying would have eaten at me. If the answer is the
same for you, that tells you something.

+ Be honest about the financial stress. Running on savings with zero income for months can
push you into bad decisions. Desperation is not a business strategy. Plan around it.

The Reality on the Other Side

+ Expect the emotional rollercoaster and build habits to manage it. Highs and lows come fast.
Journal, exercise, talk to other founders. Don’t let a bad Tuesday become a bad quarter.

«+ Accept that you’re not just a developer anymore. Sales, support, marketing, community...
you’re doing all of it. Block time for non-code work from day one or it will eat your coding
hours.

« Think about who you can lean on. The isolation catches people off guard. Find a community, a
co-working space, a founder friend you can message when things feel hard.

David Boyne 5

A Bootstrapper’s Diary February 2026

+ Let the ethos carry you through the slow months. | believe in building in public and earning
developer trust through transparency. That belief kept me going when revenue was nowhere
in sight. Know your “why” before you need it.

« Something people don’t talk about enough: the fear fades faster than you’d expect. The scari-
est part is the week before you jump, not the months after. Once you'rein it, you start learn-
ing by doing.

Start Before You’re Ready (But Start Smart)

+ Ship something people can pay for while you still have income. License keys, a paid tier, a
support plan. Anything. | sell license keys for EventCatalog. You don’t need a fully-grown Saa$
on day one.

+ Research open source business models before you commit to one. Open-core, dual licensing,
managed services, support contracts. Read what’s working for other maintainers and pick
the one that fits your project.

+ While you still have a job, build your audience. Write about what you’re learning. Share your
progress. Every person who follows your journey now is a potential customer later.

« Think about what “sustainable” means for you specifically. It might not be six figures right away.
Covering your expenses while you build something you’re proud of is a perfectly valid first
milestone.

+ The best way to learn this stuff is to dive in. Books and blog posts can only take you so far... the
real learning happens when it’s your money, your time, and your project on the line.

David Boyne 6

A Bootstrapper’s Diary February 2026

My First Sale and What | Learned About Turning Free Users Into Paying
Customers

How | went from free open source project to someone actually paying me for it.

Path to First Sale

From free open source to someone actua“y paying

Give value Build trust First sl
for free & audience rst sale
|

lalcsfs, talks, community content ﬂt/wlv\eel icense keys Proo": it works
The Pricing Disconnect The First Sale Moment
Developer thinks: v Customer sees: | License Key
"Hours I spent” "Value I get"
J
Nobody pays for "an open source
documentation tool. They pay for Not about the money.
reduced onbeoarding time and Proof the problem is worth
fewer production incidents. paying to solve.

Your first customer didn't buy your code.
‘T'L\ey l:ouglnt a solution to a Problem tlﬂel/ couldn't solve.

Figure 2: My First Sale and What | Learned About Turning Free Users Into Paying Customers

For months | had an open source project that people were using, but nobody was paying me for it.
EventCatalog was free, it was growing, and | had no idea how to turn any of that into revenue. I'm a
developer. | build things. I'd never sold anything in my life.

Then about two months after going full-time, someone bought a license key. A real person, at a real
company, paying real money for something I built. The feeling was a mix of excitement, relief, and gen-
uine imposter syndrome. | remember thinking, “Someone is actually buying the stuff I’'m creating?”
It hit different because as engineers, we’re so disconnected from the purchasing side of software. We
build it. Someone else prices it and sells it.

David Boyne 7

https://github.com/event-catalog/eventcatalog

A Bootstrapper’s Diary February 2026

That first sale changed how | saw everything. It wasn’t about the money (it was a small amount). It
was proof that the problem | was solving was worth paying for. Here’s what | learned getting there,
and what I'd tell anyone who’s sitting where | was.

Build Trust Before You Build a Checkout Page

+ Give value away before you ever ask for money. Write blog posts, do talks, help peoplein the
community. Every piece of free content is a deposit into a trust account you’ll withdraw from
later.

« Think about how you feel when someone tries to sell you a developer tool. You hate it. Your
customers feel the same way. Earn attention through usefulness, not promotion.

» Focus on the problem, not your project. | talk about complexity in event-driven architectures
because | genuinely believe it’s a problem worth solving. EventCatalog happens to help with
that. Lead with the problem and people will find your solution.

+ The person who bought my first license key already knew me from my content and talks. That’s
not a coincidence. Your content flywheel is your sales engine. It just works on a longer time-
line than you’d like.

« Something to consider: if nobody in your community knows what you’re building or why, a
checkout page won’t fix that. Build the audience first, even if it feels slow.

What to Actually Sell (and When)

« Start with the simplest possible paid thing. For me it was license keys that unlock specific
features. No complex billing system, no enterprise sales team. Just a key that gates a feature.

+ Stop waiting for the perfect pricing page. Your first version of “paid” can be ugly. It just needs
to exist. You can refine it after someone actually buys.

« Think about which features your power users depend on most. Those are your candidates for
the paid tier. Gate the features that solve pain for teams, not individuals. Teams have bud-
gets. Individuals don’t.

+ Don’t try to figure out pricing in a vacuum. Talk to the people using your project. Ask what
problems it solves for them. Ask what they’d pay to keep solving that problem. Their answers
will surprise you.

+ Something to consider: you don’t need to monetize everything. Keep the core open source.
Keep the community goodwill. Just find the one or two things that are worth paying for and
start there.

David Boyne 8

A Bootstrapper’s Diary February 2026

The Moment Someone Pays You

+ Let the first sale validate the problem, not your ego. It’s tempting to celebrate the revenue.
The real signal is that someone has a problem painful enough to pay for a solution. That’s what
you’re building on.

« Expect a cocktail of feelings. Excitement, relief, and imposter syndrome all at once. That’s nor-
mal. Every founder I’ve talked to felt the same way about their first sale.

+ Think about what that first customer actually bought. They didn’t buy your code. They bought
asolution to a problem they couldn’t solve themselves. Remember that when you’re pricing,
positioning, and building.

+ Reach out to your first customer and ask them why they bought. Not in a survey. In a real
conversation. What they tell you will shape everything that comes after.

+ Thefirst saleis tiny in dollar terms but enormous in what it unlocks. It proves the model works.
It proves people will pay. Everything after that is just doing it again.

The Developer Pricing Disconnect

+ As developers, we’re terrible at pricing our own work. We think in terms of “hours spent
building” instead of “value delivered to the customer.” Unlearn that as fast as you can.

« Think about what companies pay for other tools in your space. Enterprise software pricing
would shock most engineers. Your tool is probably worth more than you think, especially if
it saves a team time or reduces risk.

+ Sell to the problem, not the project. Nobody pays for “an open source documentation tool.”
They pay for “a way to reduce onboarding time and prevent production incidents.” Same prod-
uct, completely different value.

+ Don’t be afraid to charge. Seriously. Free users who would never pay are not the audience
for your paid tier. The people who need what you’ve built will pay for it if you ask.

« Something to consider: pricingis its own skill and it’s one most of us never learned. Read about
how other open source founders price their products. | went with open-core (free core, paid
features behind license keys) and it’s been a good fit... but it took me a while to get comfortable
with it.

David Boyne 9

A Bootstrapper’s Diary February 2026

How | Turned Content Into a Growth Engine and Why It Works Better
Than Ads

Why developer advocacy and problem-space thinking created a compounding growth flywheel

for me

Content as o Growth Engine
Why l«ef‘;ing first builds a Flywlneel that ads can't buy

Advocate the problem space

trust

FEEDBACK

Listen and loop back H‘elP First, sell never

users
?ns'ngl\ts

Open source as ProoF

Content Community \ Product Feedback
Write about the mess| | Help ocutside your tool | | Make most of it free Users reveal blind spots
Share patterns freely Play the long game . Walk the walk Questions = blog posts
Have hot takes Build relationships) Build in public Measure real usage
Never p?tcl« Not a Funnel Keep it s‘.mp|e Slow but compounds

Figure 3: How | Turned Content Into a Growth Engine and Why It Works Better Than Ads

I spent years advocating for event-driven architectures before EventCatalog existed. | wrote about the
mess, the complexity, the patterns that work and the ones that don’t. | wasn’t selling anything. | was
just helping people navigate the same problems I'd faced.

When | started building EventCatalog, something clicked. People came to the project because they

David Boyne 10

https://github.com/event-catalog/eventcatalog

A Bootstrapper’s Diary February 2026

already knew me from the problem space. They trusted me because I'd helped them before, not be-
causel pitched them a product. I realized then that contentisn’t just marketing. It’s part of the product
itself.

Here’s what I've learned about how this flywheel works and why it matters more than you think.

Content: Advocate the Problem Space

+ Write about the mess, not your solution. Event-driven architectures are complex. Documen-
tation is a pain. That’s what | write about. Not “here’s why EventCatalog is great” but “here’s
why this whole space is hard and what I’'ve seen work.”

« Think about what would be useful to someone who never uses your product. That’s the content
worth creating.

« Share patterns and anti-patterns from the domain. Teach concepts that apply beyond your
tool. This builds trust because you’re helping first, selling never.

+ Engineers can smell a product pitch from a mile away. Be authentic about the problem space
and they’ll respect you for it.

+ Your hot takes matter. Have an opinion. Say what you believe. “I think X is a mess” resonates
more than “here are some considerations.”

Community: Help First, Sell Never

« Answer questions even when people aren’t using your product. | spend time on forums,
Discord servers, helping people solve problems that have nothing to do with EventCatalog. That
compounds.

+ Think about the long game. Someone you help today might not use your tool for two years. But
when they do need it, or when they change companies, they remember.

« Engage authentically. Don’t drop product links. Don’t redirect every conversation to your so-
lution. Just be helpful. The ROl is invisible at first but it’s real.

+ Engineersareyourideal customer profile and they’re very sensitive to sales tactics. Authenticity
wins over conversion optimization every time.

+ Build relationships, not a funnel. The people in your community become your feedback loop,
your advocates, your next hires. This is worth more than any growth hack.

Product: Open Source as Proof

« Make most of it free. Open source is how you prove you’re serious about helping, not just
extracting value. People can see your code, your roadmap, your priorities.

David Boyne 11

A Bootstrapper’s Diary February 2026

« Think of paid features as sustainability, not the goal. The core value needs to be accessible or
the flywheel doesn’t spin.

+ Your product backs up what you teach. If you write about documentation being hard, your
tool better make documentation easier. Walk the walk.

« Buildingin publiccompounds trust. People see you iterating, taking feedback, making mistakes.
That’s powerful.

+ Don’tover-index on features. Most developers would rather use something simple that solves
the core problem than a feature-bloated tool that tries to do everything.

Feedback: Listen and Loop Back

+ Users give you problem insights you’d never find alone. Every conversation reveals gaps in
your thinking, edge cases you didn’t consider, pain points you forgot existed.

« Think about feedback as fuel for your next content. Someone asks a question? That’s your next
blog post. Multiple people hit the same wall? That’s a talk.

+ This is where the flywheel compounds. Content brings people in. People give you feedback.
Feedback shapes your product and your content. Better content brings more people. It’s slow
but it works.

+ Measure what matters. Not just downloads or stars. Are people actually using it? Are they com-
ing back? Are they recommending it?

+ The cycle takes time. I’'m still figuring this out. But | know it works because I've seen it. Con-
tent from two years ago still brings people in. Conversations from last month shape what I’'m
building today.

David Boyne 12

A Bootstrapper’s Diary February 2026

I Confused Shipping Speed With Product Speed

Shipping fast doesn’t mean shipping smart. Here’s what | learned about finding the right release
cadence when your users have jobs and limited bandwidth.

Find Your Product Heartbeat

Sl«?(a[a'msc fast is not the same as wmoVing forward

Racin
daily releases

V

vl v12 vi13 vig¢ vi5 v1é v1F users tune out -

Stead

weekly releases

A ———\—

Week 1 Week 2 Week 3 users engage each time
The Rhythm That Works Remember: They Have Jobs
LP'QY\ mon‘tl«ly big picture, priorities) Every release = a decision:
Do I upolate?

(Release weeklv l:»uno“eal] what cl«angec‘?
Is it worth the effort?

i d le build spged = 202020209— - - - - - T T T - T T T T T ==
! Code dmly I Ff::u:;ﬁm:e Paf:e Maoke each one worth their time.

Figure 4: | Confused Shipping Speed With Product Speed

For a while, | was shipping features almost every day. Sometimes multiple times a day. With Al tooling
making it easier to move fast, it felt productive. I'd wake up with an idea, have it in production by
afternoon, and announce it to the community. Rinse and repeat.

But something started to shift. Social engagement was declining. People were still using EventCata-
log, but the excitement around releases felt... muted. Then a few users started giving me feedback,

David Boyne 13

https://github.com/event-catalog/eventcatalog
https://github.com/event-catalog/eventcatalog

A Bootstrapper’s Diary February 2026

gently atfirst. “The paceisabit much.” “Hard to keep up with all the changes.” It hit me: | was creating
noise, not momentum.

| had to relearn something fundamental. My users have jobs. They have their own projects. Event-
Catalog is self-hosted, which means every release is a decision they have to make. Do | update? What
changed? Is it worth the effort? | was moving at my pace as a builder, not their pace as users trying to
get work done. Here’s what I’'ve learned about finding the right heartbeat for a product.

The Trap of Shipping Too Fast

+ Just because you can build fast doesn’t mean you should release fast. Al tooling and mod-
ern dev workflows make it easy to ship features daily. That speed is a tool, not a strategy.

« Think about what “momentum” actually means. It’s not how many features you ship. It’s
whether people notice, care, and adopt what you’re building. Constant releases create noise
that drowns out the signal.

» Engineering speed and product speed are different things. You can code every day and still
release weekly. Use the time between releases to bundle features, write better docs, and craft
updates that are easier to digest.

+ Something to consider: when everything is urgent and new, nothing feels important. Your
users tune out when the release cadence becomes background noise.

+ Developers love to build. It’s what we do. But product work is just as important as coding. Plan-
ning, bundling, positioning, communicating... that’s the stuff that turns features into value.

The Signal You’re Overdoing It

« Watch your engagement metrics. If people used to react to your releases and now they don't,
that’s not a content problem. That’s a frequency problem.

« Listen when users tell you the pace is too much. They’re being polite. What they mean is: “I
can’t keep up and it’s starting to feel like work to follow your project.”

« Self-hosted products have a different rhythm than SaaS$. Every release asks your users to
take action. Update the dependency. Test it. Deploy it. Respect that friction.

« Think about how you feel when a tool you use releases updates constantly. It’s exhausting. Your
users feel the same way about your product.

+ Something to consider: if you’re releasing daily and getting less engagement than when you
released weekly, the market is telling you something. Slow down and let each release land.

David Boyne 14

A Bootstrapper’s Diary February 2026

Finding Your Heartbeat

+ The rhythm that’s working for me: plan monthly, release weekly, code daily. Plan the big-
ger picture once a month. Reconcile priorities every week. Ship one meaningful update per
week. Code and fix issues as they come up.

« Think about bundling features instead of shipping them one at a time. Three small features in
one release feels like progress. Three releases in three days feels like chaos.

« Weekly releases create a predictable rhythm. Your users know when to expect updates. You
have time to write good changelogs and explain what changed. Everyone wins.

« Something to consider: consistency beats intensity every time. A heartbeat is steady. It’s reli-
able. It doesn’t race, and it doesn’t flatline.

+ Don’t confuse building with shipping. You can work on five things at once. Just don’t release all
five at once. Use your velocity to build a backlog of polished features, then release them
at a sustainable pace.

+ The “plan weekly, release weekly” idea resonates because it decouples your internal pace from
your external communication. Ship on a schedule that respects your users’ bandwidth, not
your build speed.

What Your Users Actually Need

+ High-quality releases beat high-frequency releases. Spend the extra time writing better
docs, better changelogs, better examples. Your users will engage more when each release feels
complete.

« Think about the cognitive load you’re putting on your audience. Every release is a micro-
decision for them. Do | update? Do | read the changelog? Do | test it? Make those decisions
worth their time.

+ Your users have jobs, side projects, and limited attention. Especially in the developer tools
space, your audience is busy. They want to see progress, but they can’t track constant change.

+ Something to consider: self-hosting means your users are responsible for keeping your product
running. The more you release, the more work you’re creating for them. Be thoughtful
about that trade-off.

+ Developers want simple solutions to hard problems. Spend your time making the product
simpler, not just adding features. That’s where the real value is, and it takes longer than you
think.

« Remember: you’re building for the long term. A sustainable pace now is better than burning
out your users (or yourself) with unsustainable intensity.

David Boyne 15

A Bootstrapper’s Diary February 2026

| Got to $23K MRR Without Stripe and What That Taught Me About
Starting Simple

You don’t need half the infrastructure you think you need. Here’s what actually matters when
you’re building something from zero.

$23K MRR Without Stripe

You don't need the stack you think you need

what I tl«ougln‘t I needed what I actua"y used
S‘tripe in‘tegration Hoslt?:{:! SaaS SelF-l«os’Ceo(tOOI Manual invoices
or
2 . Users own their data Talked to every buyer
Automated | Usage dashboards
OHLOG\VA"\Q - License ke(/ server Manual contracts
Data-backups SlLAs ¢eL/cd Enabled keys in the DB Learned the market
Months of building before a single sale Scrappy? Yes. Embarrassing? Sometimes.
Maintaining Plumbinsf not Proo!uct But it worked. $23K MRR.
Day 1 Se$
Do it manua"y Notice the Pain Add with data
Learn what matters Manual work becomes Now you know what to
from every interaction a bottleneck? dutomate. build. Mot guessing.

Comp[exi‘ty iS a one-way door.
Be re,a“y sure you need it before you build it.

Figure 5: | Got to $23K MRR Without Stripe and What That Taught Me About Starting Simple

When | started building EventCatalog, | had this picture in my head of what a “real” product looks like.
Stripe integration. Hosted SaaS platform. Automated onboarding. Dashboards. The works. And |
almost went down that road. But something stopped me. | looked at what I actually needed to prove
and realized... none of that stuff mattered yet.

So I started simple. Really simple. A self-hosted tool with a license key server. No Stripe. No hosting.
No SLAs. No data backups. | handled contracts manually. | sent invoices by hand. | enabled license
keys directly in the database. It felt scrappy, and honestly, it felt a bit embarrassing at times. But it

David Boyne 16

https://github.com/event-catalog/eventcatalog

A Bootstrapper’s Diary February 2026

worked. | got to $23K MRR doing things that way.

The lesson | keep coming back to is this: most of us are building for a version of our product that
doesn’t exist yet, for users we don’t have yet, solving problems we haven’t confirmed are real. Here’s
what I've learned about keeping things simple and why it might be the most important thing you do
early on.

You Don’t Need the Stack You Think You Need

« Start by asking what you actually need to prove. Is it that people will pay? That the product
solves a real problem? You can validate both without Stripe, without a Saa$S platform, without
any of the “standard” infrastructure.

« Think about what your product looks like if you strip away everything except the core value.
That’s your starting point. Everything else is a distraction until you’ve proven the core
works.

« | ran without Stripe for the first $23K of MRR. Manual invoices. Manual license keys. It was
slow, but it forced me to talk to every single customer. That was worth more than any payment
integration.

+ Somethingto consider: every piece of infrastructure you add is something you have to maintain.
As a solo founder, your time is the scarcest resource you have. Spend it on the product, not
the plumbing.

+ Self-hosting can be a superpower. No servers to manage. No uptime guarantees. No data
liability. Your users own their data, and you get to focus purely on making the tool better. There’s
a huge market for self-hosted software, especially if you’re bootstrapping alone.

Do Things That Don’t Scale

+ Handle things manually until it hurts. Contracts, invoicing, onboarding, license key provi-
sioning. Do all of it by hand at first. You’ll learn things about your customers that no dashboard
will ever tell you.

« Think about what you’d automate on day one if you were following the “standard” playbook.
Now ask yourself: do | actually need that right now, or am I just building it because it feels pro-
fessional?

« Every manual interaction is a chance to learn. When | was enabling license keys in the
database myself, | knew exactly who my customers were, what they needed, and why they
were paying. That’s invaluable early on.

+ Something to consider: the things that don’t scale are often the things that build the deepest
understanding of your market. Automation is great, but not before you understand what

David Boyne 17

A Bootstrapper’s Diary February 2026

you’re automating.

+ You can always add infrastructure later. | just added Stripe recently. The business didn’t
suffer without it. If anything, the delay helped me understand my pricing and customers better
before locking into a system.

Simple Is Enough (Until It Isn’t)

« Stop waiting for your product to feel “ready.” It won’t. Ship the simplest version that solves
a real problem for real people. You can iterate from there.

« Think about the difference between “simple” and “incomplete.” A product with one well-solved
use case is simple. A product with ten half-built features is incomplete. Aim for simple.

« Your first version doesn’t need to look like anyone else’s product. It doesn’t need a flashy
homepage. It doesn’t need a polished onboarding flow. It needs to work, and it needs to solve
a problem someone is willing to pay for.

+ Something to consider: most people building products are learning on the fly. That’s normal.
You don’t need to have it all figured out. You just need to start, and starting simple is the
fastest way to learn what actually matters.

« The bar for “good enough” is lower than you think. Especially in developer tools, people
care about whether your product solves their problem. They’ll forgive rough edges if the core
value is there.

How to Know When to Add Complexity

+ Add infrastructure when the manual version becomes a bottleneck, not before. If you’re
spending more time on invoicing than building features, that’s when you automate invoicing.
Not a day sooner.

« Think about what your customers are actually asking for. Are they asking for Stripe? Or are
they asking for the product to do more? Build what they’re asking for, not what you think a
product “should” have.

+ Watch for the signals. When manual processes start eating into your product development
time, when customers start expecting faster turnaround, when you’re dropping balls because
there’s too much to juggle. Those are the signs.

« Something to consider: complexity is a one-way door. Once you add a hosted option, a Saa$S
tier, or an automated billing system, you’re maintaining it forever. Be really sure you need it
before you build it.

» The best time to add complexity is when you have data, not opinions. After months of man-
ual work, you’ll know exactly what to automate, what to skip, and what your customers actually

David Boyne 18

A Bootstrapper’s Diary February 2026

value. That’s a much better position to build from than guessing on day one.

David Boyne 19

A Bootstrapper’s Diary February 2026

How Al Gave Me the Capacity of a Small Team and Why That Changes
Everything for Solo Founders

The bottleneck used to be building. Now it’s deciding what to build. Here’s how Al shifted what’s
possible when you’re bootstrapping alone.

AL Gave Me a Team

The bottleneck didn't ohsappe_ar. It wmoved.

BEFORE 4 AFTER)
Code Product
—= strategy
Test & SL\IP \s User
D conversations
Solo o You as .
FDMV\D{QY’ orchestrc\tor [POS\tnonms]

Support

Marke.ting | AT [:]
- Test & Shi
{ Product? } & ° e J

[

Docs & Support l

Every hat, not enough hours. Qigl«er leverage. Faster compounding. /
Watch Out what's Coming
Speeo(is not progress Tiny teams, massive output
5 features shipped, 0 move the needle Vo excuses left to not start

Don't re.place. tl«lnking with AT

> Document everything —-

it's shared context with AL

Figure 6: How Al Gave Me the Capacity of a Small Team and Why That Changes Everything for Solo
Founders

I’'ve been building EventCatalog on and off for four years. For most of that time, | was the bottleneck.
PR reviews piled up. Code took days to ship. Invoices, contracts, GitHub issues, releases... it all sat
on my plate, and there was only so much | could get through in a day. That’s just the reality of being
a solo founder. You wear every hat, and some of them don’t fit.

But over the past 14 months of going full-time, something shifted. Al tooling got genuinely good. Not
“helpful autocomplete” good. More like “this thing just reviewed my pull request, brainstormed a fea-

David Boyne 20

https://github.com/event-catalog/eventcatalog

A Bootstrapper’s Diary February 2026

ture with me, and helped me shipitin a few hours” good. The bottleneck I'd been living with for years
started to dissolve. Not completely, but enough that it changed how I think about what’s possible
alone.

Thethingis, the bottleneck didn’t disappear. It moved. And that’s worth understanding if you’re build-
ing something solo. Here’s what I’'ve learned about working with Al as a bootstrapper, what it unlocks,
and the traps that come with it.

The Bottleneck Moved

+ For years, the constraint was building. | had more ideas than | could ship. Features satin my
head for weeks because there weren’t enough hours to code, test, document, and release them.
That’s not the constraint anymore.

+ Think about where your time actually goes. If you're still spending most of it writing code, Al can
probably take a big chunk of that off your plate. The question shifts from “can I build this?”
to “should I build this?”

« The new bottleneck is product thinking. What to build, what to prioritize, how to position it,
how to communicate it. These are the decisions that matter most now, and they’re harder to
outsource to an Al.

+ Somethingto consider: if Al removes the building constraint, what’s left is the stuff that requires
your judgement, your taste, your understanding of your users. That’s where your value is as
a founder. Leaninto it.

+ This is actually good news. Product decisions are higher-leverage than code. Every hour you
spend thinking about what to build (instead of how to build it) compounds faster.

What I Actually Do Now

+ Most of my coding time is spent orchestrating agents, not writing code myself. | describe
what | want, review what comes back, steer the direction. What used to take me days now takes
hours. It’s a completely different workflow.

+ luse Al across the whole business, not just code. SEO audits, copywriting, product strategy,
brainstorming. I’'ve built custom skills and agents that understand my project’s vision and mis-
sion. They reference my docs. They stay aligned with where I’'m headed.

+ Think about documenting your vision and keeping it in your codebase. When your Al tools can
reference your mission, your brand voice, your product direction, the output quality goes
way up. Context is everything.

« The time | save on building goes straight into product and business work. Roadmaps, user
conversations, positioning, pricing. The stuff | used to squeeze into the gaps between coding

David Boyne 21

A Bootstrapper’s Diary February 2026

sessions now gets real attention.

+ Something to consider: the skill of being a solo founder is shifting. It’s less about being a great
coder and more about being a great orchestrator. Learn to direct Al well and you’ll move
faster than most small teams.

The Traps That Come With More Capacity

+ More capacity means you can ship too much, too fast. | learned this the hard way. If your
users can’t keep up with your changes, you’re creating noise, not value. Al makes it easy to
build. That doesn’t mean you should release everything you build.

« Watch out for losing your ability to think critically. Al feels like a cheat code sometimes. But if
you skip the hard thinking, you skip the learning. You’ll make worse product decisions because
you never developed the muscle.

« Think about how much trust you’re putting in Al output. We naturally give it too much credit.
It sounds confident even when it’s wrong. Review everything. Question the suggestions. The
moment you stop thinking for yourself is the moment your product starts drifting.

« Don’t confuse speed with progress. You can ship five features in a week with Al help. But
if none of them move the needle, you just created five things to maintain. Velocity without
direction is just busy work.

+ Something to consider: the founders who will do best with Al are the ones who use it to free up
thinking time, not replace thinking entirely. Stay in the loop. Stay curious. Stay critical.

Smaller Teams, Bigger Output

+ We’re going to see a wave of tiny companies doing things that used to require 20-person
teams. One or two people with the right Al tooling can build, ship, and support products at a
scale that wasn’t possible two years ago. This is just getting started.

« Think about what this means for you personally. If you’ve been waiting to start something
because you thought you needed a team, that barrier is lower than it’s ever been. The
excuses are running out.

« Self-hosted, bootstrapped products are perfectly positioned for this. No infrastructure to
manage. No SLAs. No ops team. Just a product people install and run themselves. Al handles
the building, you handle the product and the customers.

« Document everything about your project. Your vision, your tone, your architecture, your de-
cisions. The better your documentation, the better Al can help you. Your codebase becomes
the shared context between you and your Al collaborators.

David Boyne 22

A Bootstrapper’s Diary February 2026

« Something to consider: the playing field is levelling out. Big companies have more people, but
solo founders have more speed and more focus. Al amplifies both. If you can move fast and
stay focused, you can compete with anyone.

David Boyne 23

A Bootstrapper’s Diary February 2026

Why | Spent All My Time Chasing New Customers and What | Learned
When Renewals Hit

What happens when you focus all your energy on acquisition and forget the people already pay-

ing you.

The New Customer Trap

You're FI“ing the bucket. But is it |eakin3?

7 YEARTWO)

Renewals expose the truth
still ado('mg

¢ ‘ Proactive check-ins
Don't wait for Prouems

Usage Jo\sb\boa\ro‘s
See who's stuck
MRR At-risk alerts
Know before renewal day

‘1’ (Customel’ health seore
churn Track it ke MRR

THE FIX

Plug leaks before renewal

Evert/tlaing looks grea‘t

CL\MY‘V\ CL\MV‘J’\

Revenue up. Feels good.
No contracts up yet. No
sigmals am/‘tl'\ins, is wrong.

Multiple renewals land at
once. Scraml:[ing. All the

acquisition cost -- gone.

A renewal is worth more

than a cold lead.

Figure 7: Why | Spent All My Time Chasing New Customers and What | Learned When Renewals Hit

The new customer trap

I’ll be honest, getting a new paying customer is one of the best feelings in bootstrapping. Someone
sees what you’ve built, pulls out their card, and says “yes, this is worth paying for.” That dopamine
hit is real. And when you’re early on, you need that revenue. You need the runway. So you chase the

next one. And the next one. It makes total sense.

The problem is, | did this for a long time. Every week was about who’s in the funnel, who’s close to
signing, how do | get the next logo. And it worked... for a while. Revenue was going up. Things felt

good.

Then year two arrived. Renewals started coming up. And suddenly | realized | had spent almost no

David Boyne 24

A Bootstrapper’s Diary February 2026

time making sure the people already paying me were actually getting value from EventCatalog. I'd

been so focused on filling the bucket that | forgot to check if it was leaking.

The Dopamine Hit of New Customers

Recognize that acquisitionis addictive. Every new customer feels like validation. That’s great,
but it can pull all your attention away from the people who already believe in you.

Think about where yourtime actually goes each week. If you’re spending most of it on prospects
and almost none on existing customers, that’s a pattern worth noticing early.

New customer revenue is exciting, but renewalrevenue is what keeps you alive. One builds
momentum. The other builds a business.

Something to consider... the skills that win new customers (marketing, demos, sales) are com-
pletely different from the skills that keep them (support, onboarding, making sure they get ROI).
You have to invest in both.

What Happens When Year Two Arrives

Renewals will expose every shortcut you took. If customers aren’t getting real value from
your product, you’ll find out when it’s time to renew. Not before.

The painful thing is retention problems are invisible early on. Everything looks fine because no-
body’s contract is up yet. Then suddenly, multiple renewals land at once and you’re scrambling.
Ask yourself right now: do your current customers know how to get the most out of your
product? If you’re not sure, that’s your answer.

Think about this... a customer who churns after year one isn’t just lost revenue. It’s all the time
you spent acquiring them, onboarding them, and supporting them. Gone.

What I’m Doing Differently Now

| started reaching out to customers proactively. Not waiting for them to come to me with
problems. Regular check-ins, even quick ones, go a long way.

I built usage tracking and custom dashboards so | can actually see if customers are using
EventCatalog, how often, and where they might be stuck. You can’t improve what you can’t
see.

I set up automation to flag at-risk accounts. If usage drops, | want to know before the renewal
conversation, not during it. Early signals give you time to act.

Something worth exploring... make “customer health” as visible as your MRR dashboard. If you
track new revenue obsessively but don’t track engagement, you’re flying blind on retention.

David Boyne 25

https://github.com/event-catalog/eventcatalog

A Bootstrapper’s Diary February 2026

How to Avoid This Trap From Day One

+ Your first 5-10 customers are your most important asset. Resist the urge to immediately
chase number 11. Make sure 1 through 10 are thriving first.

+ Get on calls with your existing customers regularly. Ask for feedback. Move fast on it. The
power of being a solo founder or small team is that you can ship what they need this week, not
next quarter. That surprises people in a good way.

« Thinkabout building retention into your workflow from the start. Don’t wait until renewals force
you to figure it out. A simple monthly check-in habit costs you nothing and catches problems
early.

« Growth isn’t just new logos. A customer who renews, expands, or refers someone is worth
more than a cold lead. Some of the best “acquisition” you can do is making sure your existing
customers love what you’ve built.

David Boyne 26

A Bootstrapper’s Diary February 2026

Why I Undercharged for EventCatalog and What | Learned About How
Developers Get Pricing Wrong

Why developers are wired to undersell their products and how to start pricing based on the prob-
lem you solve, not the code you wrote.

Why Developers Undersell
You're pricing based on what L/ou'ol pay. Stop that.

How you see your Proo!uct

- _
8 L"I see every bug and shorteut” |
‘ "I could build a competitor for free"

You

J
')
“Tt's not gooa(enougl\ to cl«arge wmore" |

S —

What happened when I raised prices

Sales didn't dro
Biggest fear. Didn't
happen.

MRR grew
Better customers who
stick around [onger.

How to Price_ without guessing

Ask Jirec‘tly

"What would you pay?!
Their number > yours.

Cost of Problew\
If it costs them $10k/mo
charge $1k. Easy ves.

How the buyer sees it

"Save,s ml/ team 10l«rs/week"
"Reduces onboarding risk"

“Costs less than Builoliv\g it

| easy yes

20-30% puskback
If nobody Fuslﬂes back

Looked serious
Low price was signnhng

"not reao{l/." l,ou.'rp_ too cl«eap.

Start higher

You can alwo«t/s come
down. Can't go up easily.

Figure 8: Why | Undercharged for EventCatalog and What | Learned About How Developers Get

Pricing Wrong

Developers and pricing

Someone told me something that stuck with me. “Developers are terrible at pricing.” At first | pushed
back on it. I'd spent years thinking about what things cost, comparing tools, hunting for deals. But
that’s exactly the problem. We’re price sensitive. We compare everything to free. We know we could

David Boyne 27

A Bootstrapper’s Diary February 2026

probably build it ourselves. And when it comes time to price our own products, all of that baggage
comes with us.

Here’sthe thing | didn’t fully understand untill raised my prices on EventCatalog. Developersarerarely
the ones buying software in a company. The budget holder is a VP, a team lead, a director. They’re
solving a business problem and they have a budget for it. Software sells for thousands in enterprises.
But as developers, we’re disconnected from that entire flow. So we price based on what we’d pay, not
what the product is worth.

I raised my prices, and nothing bad happened. MRR grew. Nobody left. If anything, the product started
looking more serious. That was a wake-up call. Here’s what I’'ve learned about this trap and how to
think about it differently.

Why Developers Are Terrible at Pricing

« We price based on what we’d personally pay. That’s the wrong reference point. You’re not
your customer. The person buying your product is solving a business problem with a real bud-
get, not a developer comparing it to a free GitHub repo.

+ We anchor against open source and free tools. If you’ve spent your career using free soft-
ware, it’s hard to charge $500/month for yours. But your buyer isn’t comparing you to a free
tool. They’re comparing you to the cost of building it themselves or the cost of not solving the
problem.

« Imposter syndrome sneaks into pricing. We see every bug, every shortcut, every feature we
haven’t built yet. So we think “it’s not good enough to charge that much.” Meanwhile, the cus-
tomer sees a product that solves their problem and is happy to pay.

+ Think about this... if your product feels too cheap, it might actually look cheap. There’s real psy-
chology behind pricing. A low price can signal “this isn’t serious” to a buyer with a real budget.

You’re Not Your Customer

+ Figure out who is actually paying. In most companies, the person using your tool and the per-
son approving the purchase are different people. The buyer cares about the business outcome,
not the tech stack.

+ Ask your customers directly what they’d be willing to pay. This sounds scary but it’s one of
the most valuable conversations you can have. Most of us guess at pricing instead of just asking.
You might be surprised how much higher their number is than yours.

+ Find out what the problem is costing them today. If your product saves a team 10 hours a
week, that’s thousands per monthin developer time. Your $200/month price looks like a bargain
against that... not an expense.

David Boyne 28

https://github.com/event-catalog/eventcatalog

A Bootstrapper’s Diary February 2026

« Something to consider... when you downplay your product on calls or apologize for missing
features, you’re training the buyer to think it’s worth less. Talk about the problem you solve,
not the code you wrote.

What Happened When | Raised My Prices

Sales didn’t drop. This was my biggest fear and it just didn’t happen. The people who see
value in your product will pay what it’s worth. The ones who won’t were probably going to
churn anyway.

MRR actually grew. Fewer tire-kickers, more serious buyers. Higher prices can attract better
customers who stick around longer and get more value from the product.

I read that you want about 20-30% of prospects pushing back on price. If nobody is pushing
back, you’re probably too cheap. That pushback is actually a healthy signal that you’re in the
right range.

+ Stop giving too much away for free. It’s tempting to be generous with free tiers and discounts
because charging feels uncomfortable. But every discount trains your market to expect lower
prices. Be thoughtful about what’s free and what’s paid.

How to Price Without Guessing

+ Start by understanding the cost of the problem. How much is this costing your customer in
time, money, or risk right now? Price your product as a fraction of that cost. If you save them
$10,000/month, charging $1,000 is an easy yes for them.

« Have honest pricing conversations early. Ask prospects “what would you expect to pay for
this?” and “what’s this problem costing you today?” These two questions will teach you more
about pricing than any blog post.

« Start higher than feels comfortable, then watch the signals. You can always come down,
but raising prices on existing customers is much harder. Give yourself room to learn.

« Think about revisiting your pricing every 6 months. Your product gets better over time. Your
understanding of the market deepens. Your prices should reflect that growth... not stay frozen
at whatever you guessed on day one.

David Boyne 29

A Bootstrapper’s Diary February 2026

How Al Made Scope Creep My Biggest Threat and Why Speed Is Not a
Strategy

Al makes building faster than ever. That’s exactly why it’'s more important than ever to build less.

AL Makes Scope Creep Worse

Speed is not a strategy. Build less, not more.

The Trop: Friction Used to Protect You

7

Before AT with AT

‘ \
| S pr—
2 weeks 2 weeks I AL .
: thinking building ‘ | _ shig/ sl >
J

\ Natural filter: bad ideas die here No filter. Everything ships. Scope explodes.

The Real Cost of "Just 30 Minutes" The Filter: 4sk Before You Build

l Build time J Did a customer ask for this?

Does it make the product simpler?

Support tickets

Documentation Does it still matter tomorrow?
Edge cases & bugs

User cognitive load

Every feature is a promise.

Simplicity as Strategt/

Say no to 80% of ideas.
vs LJ That's what makes the

e.vel’lfti«‘mg kind of OK a few tl«ings done well 'rema;ning 200]" gre.c\‘t.

Figure 9: How Al Made Scope Creep My Biggest Threat and Why Speed Is Not a Strategy

Here’s something I didn’t expect. The better Al tools get, the harder it is to stay disciplined about what
I build. Fourteen months ago, | had a natural filter. If a feature was going to take two weeks to build, |
had to really want it. | had to justify the time. Now? | can describe an idea to Claude Code faster than
| can sketch a mockup. And that changes everything about how scope creep sneaks in.

I’ve fallen into this trap more times than I'd like to admit. “Just add this one thing.” “It’ll only take an
hour.” The problem isn’t that the feature is bad. The problem is that every feature you ship is a feature

David Boyne 30

A Bootstrapper’s Diary February 2026

your users have to learn, and a feature you have to maintain. I've watched users struggle to keep up
with changes because | was shipping faster than they could absorb.

The truth is, your users are craving simplicity. They want a product that feels good, that’s easy to get
started with, that doesn’t overwhelm them. And the only way to give them that is to build less, not
more. Here’s what I've learned about keeping scope creep in check when Al makes everything feel
possible.

The Trap

« It’s faster to describe an idea than to evaluate it. That’s the core problem. The friction that
used to protect you from bad ideas is gone. You used to have time to think while you built. Now
the building happens before the thinking.

+ “It only took 30 minutes” is the most dangerous sentence in your vocabulary. The cost of
afeature is never the time it took to build. It’s the support tickets, the documentation, the edge
cases, the cognitive load on your users.

« Al doesn’t have product sense. It’ll build whatever you ask for, brilliantly. But it can’t tell you
whether you should be asking in the first place. That’s still your job, and it’s more important
than ever.

+ Experimentation feels productive but can be a distraction. Building cool things is fun. | get
it. But fun and valuable aren’t the same thing. Something to consider next time you’re about to
ship something “just because you can.”

The Real Cost

» Users can’t absorb features as fast as you can ship them. I've seen this firsthand. You push
three updates in a week and people start feeling lost. The product they liked yesterday feels
different today.

« Every feature is a promise. Once it’s out there, someone depends on it. Now you’re maintain-
ing it, fixing bugs in it, making sure it works with the next thing you build. That compounds
fast.

« Think about what your product feels like to someone using it for the first time. If they’re
overwhelmed, it doesn’t matter how powerful it is. They’ll leave before they get to the good
stuff.

+ Feature bloat is the slow death of simple products. The products people love most are the
ones that do a few things really well. Not the ones that do everything kind of OK.

David Boyne 31

A Bootstrapper’s Diary February 2026

The Filter

+ Before you build, ask: did a customer ask for this? If the answer is no, that’s a red flag. You
might be building for yourself, not for them.

+ Keep UX and DX at the front of your mind. How does the product feel? Is it easy to get up
and running? Are there barriers to entry? What’s the onboarding like? These questions won’t
go away no matter how good Al gets.

+ Sleep on it. Seriously. If the idea still feels important tomorrow, maybe it’s worth building. If
you’ve already forgotten about it, you just saved yourself a maintenance headache.

« Think about whether this makes the product simpler or more complex. The best features
remove friction. The worst ones add options. There’s a difference.

« “Can | build this?” is the wrong question. “Should I build this?” is the right one. Al shifted
the bottleneck from capability to judgment. Your judgment is now the most valuable thing you
bring to your product.

Simplicity as Strategy

« Simple products win. Not because they’re easy to build, but because they’re easy to use. That’s
what people pay for. That’s what they recommend to others.

+ Your role is changing. Al can be the builder now. Your job is to be the product person. To
decide what not to build. To protect the experience. That’s harder than writing code, and it
matters more.

« Constraints are a feature, not a bug. Saying no to 80% of ideas is what makes the remaining
20% great. Don’t let Al’s speed erode your ability to say no.

+ Think about the products you love most. Chances are they feel focused. They do one thing
or a few things really well. That’s not an accident. Someone said no to a thousand other ideas
to get there.

+ Simplicity is a competitive advantage that compounds. While others are drowning in fea-
tures, a focused product becomes easier to use, easier to support, and easier to grow. That’s a
position worth protecting.

David Boyne 32

	About the Author
	Why I Quit My Job to Build EventCatalog and What I Learned About Taking the Leap
	The Build-Up
	Making the Jump
	The Reality on the Other Side
	Start Before You’re Ready (But Start Smart)

	My First Sale and What I Learned About Turning Free Users Into Paying Customers
	Build Trust Before You Build a Checkout Page
	What to Actually Sell (and When)
	The Moment Someone Pays You
	The Developer Pricing Disconnect

	How I Turned Content Into a Growth Engine and Why It Works Better Than Ads
	Content: Advocate the Problem Space
	Community: Help First, Sell Never
	Product: Open Source as Proof
	Feedback: Listen and Loop Back

	I Confused Shipping Speed With Product Speed
	The Trap of Shipping Too Fast
	The Signal You’re Overdoing It
	Finding Your Heartbeat
	What Your Users Actually Need

	I Got to $23K MRR Without Stripe and What That Taught Me About Starting Simple
	You Don’t Need the Stack You Think You Need
	Do Things That Don’t Scale
	Simple Is Enough (Until It Isn’t)
	How to Know When to Add Complexity

	How AI Gave Me the Capacity of a Small Team and Why That Changes Everything for Solo Founders
	The Bottleneck Moved
	What I Actually Do Now
	The Traps That Come With More Capacity
	Smaller Teams, Bigger Output

	Why I Spent All My Time Chasing New Customers and What I Learned When Renewals Hit
	The new customer trap
	The Dopamine Hit of New Customers
	What Happens When Year Two Arrives
	What I’m Doing Differently Now
	How to Avoid This Trap From Day One

	Why I Undercharged for EventCatalog and What I Learned About How Developers Get Pricing Wrong
	Developers and pricing
	Why Developers Are Terrible at Pricing
	You’re Not Your Customer
	What Happened When I Raised My Prices
	How to Price Without Guessing

	How AI Made Scope Creep My Biggest Threat and Why Speed Is Not a Strategy
	The Trap
	The Real Cost
	The Filter
	Simplicity as Strategy

